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We solve the impurity problem which arises within nonequilibrium dynamical mean-field theory for the
Hubbard model by means of a self-consistent perturbation expansion around the atomic limit. While the lowest
order, known as the noncrossing approximation �NCA�, is reliable only when the interaction U is much larger
than the bandwidth, low-order corrections to the NCA turn out to be sufficient to reproduce numerically exact
Monte Carlo results in a wide parameter range that covers the insulating phase and the metal-insulator cross-
over regime at not too low temperatures. As an application of the perturbative strong-coupling impurity solver
we investigate the response of the double occupancy in the Mott insulating phase of the Hubbard model to a
dynamical change in the interaction or the hopping, a technique which has been used as a probe of the Mott
insulating state in ultracold fermionic gases.
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I. INTRODUCTION

Experiments with ultracold atoms in optical lattices,1 as
well as pump-probe spectroscopy with femtosecond
time-resolution2–4 and transport measurements on quantum
dots5 enable a systematic investigation of strongly interacting
quantum many-particle systems under nonequilibrium condi-
tions. In a pump-probe experiment, a material is excited with
a strong laser pulse, and its subsequent evolution is probed
by a second pulse that reaches the sample at a controlled
time delay. The breakdown of the Mott insulating phase
within a few times of the inverse hopping has been observed
in this way.3,4 Ultracold gases in optical lattices, on the other
hand, can be prepared in an equilibrium state and suddenly
quenched out of equilibrium by modifying a Hamiltonian
parameter.6 These experiments can address fundamental
questions such as the thermalization in isolated quantum
systems.7

The ongoing experimental progress has stimulated inten-
sive research on the theoretical side. While many theoretical
approaches that are designed for the investigation of corre-
lated systems in thermal equilibrium must be modified con-
siderably before they can be used to compute the real-time
evolution, dynamical mean-field theory �DMFT� �Ref. 8� is
an approximate scheme which can be used both for equilib-
rium and nonequilibrium situations.9 The method relies on a
mapping of lattice models to a single impurity model, which
is exact in the limit of infinite dimensions,10 and provides a
good basis for the realistic simulation of many correlated
materials.11 Nonequilibrium DMFT has so far been used,
e.g., to study transport beyond linear response in the Falicov-
Kimball model,12–15 as well as interaction quenches and in-
teraction ramps in the Falicov-Kimball model16,17 and in the
Hubbard model.18,19 In the last part of this paper we will use
DMFT to study the response of the Mott insulating phase to
a periodic modulation of the hopping or the interaction,20

similar to what can now be done in experiments with cold
atomic gases.21,22

Currently, the biggest challenge within the context of non-
equilibrium DMFT is the development of impurity solvers

which allow to compute the long-time dynamics after a per-
turbation. An exact solution, via a closed set of equations of
motion, is known only for the Falicov-Kimball model.12,23

For the Hubbard model, continuous-time quantum Monte
Carlo �CTQMC� can, in principle, be used to obtain an un-
biased solution.18,19 Both the weak-coupling expansion24 and
the strong-coupling expansion25 of the relevant Anderson im-
purity model have been translated from their respective
imaginary-time variants �Refs. 26 and 27 for weak coupling
and Ref. 28 for strong coupling� to the Keldysh formalism,
in order to study the real-time evolution. However, in these
real-time Monte Carlo calculations, the accessible times are
limited by the notorious dynamical sign problem. A big ad-
vantage of the weak-coupling expansion over the strong-
coupling expansion is that the diagrammatic series simplifies
in the case of particle-hole symmetry.29 On the other hand,
the sign problem in a weak-coupling calculation increases
with the interaction strength. It is thus essentially impossible
to use CTQMC to study complex excitation processes within
the Mott insulating phase, e.g., the excitation with a short
laser pulse and the subsequent relaxation.

In order to avoid the sign problem and access the regime
of strong interactions and relatively long times, we explore
the direct summation of the self-consistent diagrammatic hy-
bridization expansion up to fixed order, as opposed to
CTQMC, which is in essence a stochastic summation of the
full �nonself-consistent� series. This approach proves to be
very accurate in a wide parameter regime and suitable for the
calculation of the real-time dynamics.

Systematic approximations for the expansion around the
atomic limit of the Anderson impurity model have been used
for a long time.30–36 The simplest conserving approximation,
which has been termed noncrossing approximation �NCA�,
can correctly recover the Kondo temperature TK when charge
fluctuations are suppressed completely by the Coulomb in-
teraction U, although the Fermi-liquid behavior for T�TK is
not correctly reproduced.36,37 If U is finite, however, the
width of the Kondo resonance is severely underestimated
and various resummation schemes of the expansion have
been devised to cure this problem.38,39 Already the simplest
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correction to NCA within these schemes, the so called one-
crossing approximation �OCA�, can cure the deficiencies of
NCA to a large extent. Motivated by the fact that NCA
is already very good in the insulating parameter regime, Gull
et al.40 recently developed a bold-line hybridization expan-
sion, i.e., an approach which is based on a Monte Carlo
sampling of the corrections beyond NCA.

Starting with the work of Pruschke et al.,41 both the NCA
and the OCA have been used as an impurity solver for
DMFT �for some recent references that involve the investi-
gation of real materials, see Refs. 42–44�. Furthermore, NCA
and its corrections can readily be translated into the Keldysh
formalism to study nonequilibrium situations, although the
evaluation of higher order diagrams in real time involves
quite some numerical effort. For example, the buildup of the
Kondo resonance after a sudden shift of the impurity level in
the Kondo model has been investigated with NCA.45 The
fairly accurate results in equilibrium calculations and the
straightforward portability to the Keldysh contour make the
self-consistent hybridization expansion an interesting candi-
date for the solution of the impurity problem within nonequi-
librium DMFT.

The purpose of this paper is twofold. First, we give a
detailed description of the self-consistent expansion on the
Keldysh contour �Secs. II and III� and we benchmark the
method by applying it to the interaction quench in the Hub-
bard model on the Bethe lattice �Sec. IV�. We find similar
trends for both equilibrium and nonequilibrium: While NCA
is unreliable unless the interaction U is much larger than the
bandwidth, OCA provides an important correction, and the
third order is in almost quantitative agreement with QMC
results over a wide parameter range which includes the insu-
lating phase and the crossover regime between metal and
insulator. As an application of the perturbative impurity
solver we then study the excitation of a Mott insulator by a
time-dependent modulation of the hopping or the interaction
strength �Sec. V�. Because the interaction is rather large in
this problem, a solution using weak-coupling CTQMC is
currently not feasible.

II. DEFINITION OF THE IMPURITY PROBLEM
ON THE KELDYSH CONTOUR

To describe a nonequilibrium situation in which the sys-
tem is prepared in a thermal equilibrium state at temperature
T=1 /� for times t�0 and later acted on by some perturba-
tion, we use the Keldysh formalism.46,47 The imaginary-time
contour of the Matsubara Green’s functions for finite-
temperature equilibrium states is thereby extended to the
L-shaped contour C that runs from 0 to time tmax �i.e., the
largest time of interest� along the real axis, back to 0, and
finally to −i� along the imaginary time axis �Fig. 1�. The
Keldysh formalism is based on the use of contour-ordered
correlation functions �TCA�t1�B�t2��, where TC exchanges the
order of the two operators A�t1� and B�t2� in the product
A�t1�B�t2� if t2 appears later on the contour than t1, according
to the order which is indicated by the arrows in Fig. 1. An
additional minus sign appears if the exchange involves an
odd number of Fermi operators. The use of contour-ordered

Green’s functions allows the application of Wick’s theorem if
the action is quadratic.46 Depending on the choice of the time
arguments, a contour-ordered correlation function describes
either real-time correlations, or it recovers the imaginary-
time ordered correlation function of the initial equilibrium
state.

In the following sections we consider an impurity model
which is defined by the following action on the L-shaped
contour C:

Simp = Sloc + Shyb, �1a�

Sloc = − i�
C

dtHloc�dp
†�t�,dp�t�,t� , �1b�

Shyb = − i�
C

dt1dt2 �
p1,p2

dp1

† �t1��p1,p2
�t1,t2�dp2

�t2� . �1c�

In this action, dp and dp
† denote annihilation and creation

operators for an electron in the impurity level p �p labels spin
and orbital degrees of freedom�, and Hloc is the local Hamil-
tonian of the impurity site, which can be interacting and
time-dependent in general. The hybridization function
�p1,p2

�t1 , t2� gives the amplitude for the hopping of an elec-
tron from the p2 orbital into the bath at time t2, its propaga-
tion within the bath and the hopping back into the impurity
orbital p1 at time t1. The action in Eq. �1� can be derived
from an impurity Hamiltonian with time-dependent coupling
between bath and impurity

H�t� = Hloc�t� + �
�

��c�
†c� + �

p,�
�Vp,��t�dp

†c� + H.c.� �2�

by tracing out the bath degrees of freedom c�. It also arises
as the effective single-site problem in nonequilibrium DMFT
�Ref. 12� without direct reference to a given Hamiltonian
formulation.

The single-particle Green’s function of the impurity
model in Eq. �1� is given by

Gp,p��t,t�� = − i�dp�t�dp�
† �t���Simp

, �3�

where the contour-ordered expectation value for the action S
is defined as

0

−iβ

tmax

t3

t1

t2

FIG. 1. The L-shaped contour C for the description of
transient nonequilibrium states with initial state density matrix
�exp�−�H�0��. The indicated time arguments are in cyclic order,
t1� t2� t3 �see text�.
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� ¯ �S =
Tr�TC exp�S�¯�

Tr�TC exp�S��
. �4�

The nonequilibrium formalism presented below reduces to
the Matsubara formalism for the initial equilibrium state
when all calculations are restricted to the imaginary branch
of the contour. For time-arguments t=−i� and t�=−i�� on the
imaginary branch of C, the Green’s function G�t , t�� is di-
rectly related to the Matsubara Green’s function GM��� of the
initial thermal equilibrium state,

G�− i�,− i��� 	 iGM�� − ��� , �5�

which is translationally invariant in time. An analogous
equation is used to define the Matsubara component of all
two-time contour-ordered correlation functions that are used
in the following. The factor i on the right-hand side of Eq.
�5� is needed to recover the conventional definition of the
Matsubara functions.

III. SELF-CONSISTENT DIAGRAMMATIC
HYBRIDIZATION EXPANSION OF THE ANDERSON

IMPURITY MODEL

A. Pseudoparticle representation

In this section we compute the Green’s function in Eq. �3�
by expanding the expectation value in Eq. �4� in terms of the
hybridization function ��t , t��. The self-consistent hybridiza-
tion expansion for the Anderson model in thermal equilib-
rium has been described previously in many
places30–36,38,39,44 and the generalization from the imaginary-
time contour to the Keldysh contour is rather straightfor-
ward. Nevertheless we give a detailed derivation below, in
order to discuss some important technical differences be-
tween the equilibrium and the nonequilibrium variants of the
expansion.

Because the local part in Eq. �1b� of the action is gener-
ally not quadratic, standard diagrammatic perturbation theory
does not apply to the expansion around the atomic limit
��=0�. There exist several related strategies to bypass this
difficulty. In the CTQMC variant of the hybridization
expansion,28 high-order time-ordered correlation functions of
the impurity problem are explicitly evaluated in a suitable
basis of the local problem. We will follow a different ap-
proach, which is based on the introduction of auxiliary
particles.33,34 This allows to use standard resummation tricks
from diagrammatic perturbation theory, at the expense of
having to do a projection from the extended pseudoparticle
Hilbert space to the physical Hilbert space.

The local part Hloc�t� of the impurity Hamiltonian is writ-
ten in a local basis 
m�, which we choose time-independent
in the following:

Hloc�t� = �
mm�


m�hmm��t��m�
 . �6�

For each state m one flavor of pseudoparticles, with annihi-
lation �creation� operator am

�†�, is introduced, which is bosonic
if the state 
m� corresponds to an even number of particles on
the impurity, and fermionic otherwise. �It is assumed that

Hloc does not mix particle number states�. Note that in many
situations, Hloc�t� is diagonal in the basis 
m� although the
eigenenergies depend on time. In Sec. V below, e.g., 
m� will
be the occupation number basis and the density-density Cou-
lomb interaction changes with time. However, in other im-
portant cases, such as the presence of time-dependent trans-
verse magnetic fields, the eigenbasis of the local problem can
indeed be time-dependent.

By means of the isomorphy 
m�↔am
† 
vac�, the physical

Hilbert space of the impurity can be identified with the sub-
space of the pseudoparticle Fock space in which the total
number of pseudoparticles

Q = �
m

am
† am �7�

is exactly one. Hence the expectation value �A�t��Simp
of any

impurity observable A can be computed in the pseudoparticle
space as

�A�t��Simp
= �Ã�t��Q=1 	

�	Q,1Ã�t��S̃imp

�	Q,1�S̃imp

�8�

provided that the pseudoparticle action S̃imp and the observ-

able Ã are constructed such that they coincide with Simp and
A in the Q=1 subspace �	Q,1 is the projection onto Q=1�.
The requirement is satisfied by choosing

d̃p
† = �

m,n
Fmn

p am
† an, �9a�

d̃p = �
m,n

�Fnm
p ��am

† an, �9b�

Fmn
p = �m
dp

†
n� �9c�

for the electron annihilation and creation operators, and

S̃loc = − i�
mn
�

C
dthmm��t�am

† �t�am��t� , �10a�

S̃hyb = − i �
m,n,m�,n�

�
p,p�
�

C
dtdt�am

† �t�an�t�


 Fmn
p �p,p��t,t���Fn�m�

p� ��am�
† �t��an��t�� �10b�

for the impurity action. The first line in Eq. �10� follows
from Eqs. �1b� and �6�, and the second line results from the
insertion of Eqs. �9� into Eq. �1c�.

Feynman diagrams for pseudoparticle propagators are
most easily constructed in the grand-canonical ensemble
with respect to the total pseudoparticle number Q. For this
purpose it is convenient to switch into the interaction repre-
sentation with respect to a chemical potential term �Q. Be-
cause Q is a conserved quantity, the value of � for t�0 has
no influence on the expectation value of physical observ-
ables. We choose � to be present only at times t�0, �i.e., on
the imaginary part of the contour, where t=−i��, such that

am�t� = am exp�� Im t� , �11a�
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am
† �t� = am

† exp�− � Im t� �11b�

and the grand canonical average can be denoted as

�Ã�t��� =
�e−��QÃ�t��S̃imp

�e−��Q�S̃imp

. �12�

Grand-canonical pseudoparticle propagators on the contour C
are defined as

Gmm�
� �t,t�� = − i�TCam�t�am�

† �t����. �13�

�In the following, propagators are considered to be matrices
in their flavor indices m ,m� and the indices will be omitted
whenever this is not ambiguous.�

The restricted trace in Eq. �8� can be recovered from
grand-canonical expectation values by means of an expan-
sion in powers of the fugacity =e−��.34 For observables
which annihilate the Q=0 state �such as the impurity Green’s
function in Eq. �3��, an expansion of Eq. �12� in  yields

�Ã�t���

�Q��

= �Ã�t��Q=1 + O�� . �14�

Furthermore, the leading terms of the Green’s functions in
Eq. �13� in the fugacity expansion can be obtained in the
form �cf. Eq. �11��

G��t,t�� = k��t,t���G�t,t�� + O��� , �15�

where the projected Green’s function G�t , t�� is independent
of � and the prefactor is given by

k��t,t�� = e��Im t−Im t����C�t,t�� + �C�t�,t�� . �16�

The step function �C�t , t�� is 0 if t is earlier on C than t�, and
1 otherwise. In order to obtain a perturbation expansion di-
rectly in terms of projected quantities, the limit �→� must
be taken analytically in all expressions below. As a conse-
quence, projected Green’s functions become the basic ob-
jects in the hybridization expansion.

In addition to the symmetries of the grand-canonical
propagators,47 projected propagators have a number of useful
properties, which we list in the following paragraph. First,
one can show from their definition that they satisfy an initial
condition

Gmm��t
+,t� = − i	mm�, �17�

when t+ is infinitesimally later on C than t. Furthermore, the
factor k� essentially restricts propagation of pseudoparticles
to one direction along the contour. In particular, the leading
order of the product of two Green’s functions A� and B� is
given by

A��t,t1�B��t1,t�� � k��t,t��A�t,t1�B�t1,t�� �18�

if the time arguments t�, t1, and t are in cyclic order with
respect to the arrow in Fig. 1, and smaller by a factor 
otherwise. �In the following, we will use the notation
t1� t2� ¯ � tn to indicate that time arguments t1 , . . . , tn are
in cyclic order along C, according to the arrow in Fig. 1.�
Consequently, to leading order in  the contour convolution
of the two functions is given by

�
C

dt̄A��t, t̄�B��t̄,t�� = k��t,t���
C,t��t̄�t

dt̄A�t, t̄�B�t̄,t�� ,

�19�

where the integration range on the right-hand side must be
restricted such that t�� t̄� t.

B. Pseudoparticle Dyson equation

Grand-canonical pseudoparticle propagators obey the
usual Dyson equation with the pseudoparticle self-energy ��

G� = G0
� + G0

� � �� � G�, �20�

where �a�b��t , t��=�Cdt̄a�t , t̄�b�t̄ , t�� denotes the contour
convolution and

G0,mm�
� �t,t�� = − i�am�t�am�

† �t���S̃loc,� �21�

is the bare pseudoparticle propagator �i.e., at zero hybridiza-
tion�. The latter satisfies the equation of motion

�i�t − ��t� − h�t��G0
��t,t�� = 	C�t,t�� , �22�

where ��t�=� on the imaginary part of the contour and zero
otherwise and �h�t��mm�=hmm��t� is the local Hamiltonian as
a matrix in the flavor indices �cf. Eq. �6��. We use the nota-
tion of Ref. 19 for the derivative �t and the contour delta
function 	C, i.e., the latter is defined such that
�Cdt̄	C�t , t̄�f�t̄�= f�t� holds for any function f�t� on C, and
�t�C�t , t��=	C�t , t��.

Although we will not need an explicit expression for the
bare projected propagator G0�t , t�� in the following, it may be
a useful illustration to compute it from the equation of mo-
tion in Eq. �22�, and verify that it satisfies all the usual sym-
metries of the contour Green’s functions47 and the initial
condition in Eq. �17�. We will do this for the special case in
which the local Hamiltonian is diagonal in the basis 
m�,
hmm��t�=Em�t�	mm�: by integrating Eq. �22� with a periodic
or antiperiodic boundary condition for Bose and Fermi par-
ticles, respectively, we obtain the grand-canonical propagator

G0
��t,t�� = − ie��Im t−Im t��

exp− i�
t�

t

dt̄E�t̄��
e���+E�0�� − �


 �e���+E�0���C�t,t�� + ��C�t�,t�� , �23�

where �=+1�−1� for Bose �Fermi� particles, and E�0� is the
value on the imaginary time axis. Taking the limit �→� in
this expressions yields G0

��t , t��=k��t , t��G0�t , t��, with the
projected propagator

G0�t,t�� = − ie−i�
t�
t

dt̄E�t̄���C�t,t�� + �e−�E�0��C�t�,t�� .

�24�

Using Eq. �22�, the Dyson equation can be written in differ-
ential form
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�i�t − ��t� − h�t��G��t,t�� − ��� � G���t,t�� = 	C�t,t�� .

�25�

The corresponding Dyson equation for the projected propa-
gators is then derived by inserting Eqs. �15�, �16�, and �19�
into Eq. �25�, and taking the limit �→�

�i�t − h�t��G�t,t�� − �
C,t��t̄�t

dt̄��t, t̄�G�t̄,t�� = 0. �26�

The delta function on the right-hand side has been omitted
because this equation will be considered only for t� t�.

The numerical solution of Eq. �26� can be performed in
the same way as the solution of Dyson-type equations for
real-particle propagators, which is described in detail in Ref.
19. However, the structure of the integral in Eq. �26� implies
an important simplification. In Eq. �26�, the derivative
�tG�t , t�� is determined entirely by the value of G�t1 , t�� for
t�� t1� t. For fixed t�, Eq. �26� is thus a Volterra integrodif-
ferential equation,48 whose numerical solution is similar to
that of an ordinary differential equation with initial condition
specified in Eq. �17�. This is particularly interesting for the
initial state, i.e., when all time arguments are on the imagi-
nary branch of the contour. Substituting the definition in Eq.
�5� into Eqs. �25� and �26� yields

�− �� − � − h�G�,M��� − �
0

�

d�̄��,M�� − �̄�G�,M��̄� = 	���

�27�

for the grand-canonical version of the Dyson equation and

�− �� − h�GM��� − �
0

�

d�̄�M�� − �̄�GM��̄� = 0 �28�

for the projected Dyson equation. While Eq. �27� is a bound-
ary value problem and must be solved by Fourier transfor-
mation �G�,M���= �G�,M�0−� for bosons or fermions�, the
projected Eq. �28� is an initial value problem �GM�0�=−1�,
which is most efficiently solved in the imaginary time do-
main.

C. Diagram rules for the pseudoparticle self-energy

Because the local part of the pseudoparticle action in Eq.
�10� is quadratic, a diagrammatic expansion of pseudopar-
ticle Green’s functions and self-energies in terms of � can be
derived from the standard rules for general quartic interac-
tion terms �see, e.g., Ref. 49�. Each diagram for �� contains
one sequence of pseudoparticle propagators that connect the
two external vertices �the “backbone”� and possibly addi-
tional loops of propagator lines, e.g., renormalizations of the
hybridization function �Fig. 2�a��. To leading order in , the
backbone G��t , tn�¯G��t2 , t1�G��t1 , t�� is given by
k��t , t��G�t , tn�¯G�t2 , t1�G�t1 , t�� if t1 , . . . , tn are in cyclic or-
der along C, and smaller by O�� if the vertices are not
ordered �cf. Eq. �18��. Each closed loop of pseudoparticle
propagators contributes an additional exponentially small
factor . Thus the diagram rules for the projected self-energy
��t , t��=���t , t�� /k��t , t�� can be obtained from the diagram

rules for �� by �i�, replacing pseudoparticle propagators de-
fined in Eq. �13� by projected propagators defined in Eq.
�15�, �ii�, discarding diagrams with closed loops, and �iii�,
requiring vertices along the backbone to be in cyclic order
along C.

For completeness we summarize the final rules for con-
structing the projected self-energy ��t , t��: �i� the nth-order
contribution to ��t , t�� is given by all diagrams consisting of
2n three-leg vertices �Fig. 2�b�� at times t0= t�, t1 , . . . , t2n= t,
of which n correspond to annihilation operators d �outgoing
hybridization line�, and n correspond to d† �ingoing hybrid-
ization line�. The vertices are labeled according to Fig. 2�b�.
They are connected by one sequence of pseudoparticle lines
�solid lines, pointing from t� to t�, and n hybridization lines
�dotted lines� in all possible ways such that the diagram
cannot be separated into two parts by cutting only one line.
�ii� Sum over all internal flavor indices, and integrate over
the internal times t1 , . . . , t2n−1, respecting the cyclic order
t�� t1� ¯ � t. �iii� Because exactly one fermionic
pseudoparticle operator is attached to each end of a hybrid-
ization line, the sign of the diagram is �−1�s+f, where s is the
number of crossing of hybridization lines, and f is the num-
ber of hybridization lines that point opposite to the direction

(a)

t, m t′, m′

(b)

p m′
m

t
= 〈m(t)|d†p|m′(t)〉

p m′
m

t
= 〈m(t)|dp|m′(t)〉

t, p t, p′ = Λpp′(t, t′)

t, m t, m′= Gmm′(t, t′)

(c) i) ii)

iii) iv)

v) vi)

(d)

� �
� �

�
�

= + + +

FIG. 2. �a� A fifth-order contribution to the self-energy
�mm�

� �t , t��, consisting of Green’s functions G0
� �solid lines� and hy-

bridization functions � �dotted lines�. �b� Building blocks of the
diagrams in the hybridization expansion. The pseudoparticle line
�solid line� corresponds to the interacting propagator G in skeleton
expansions and to G0 otherwise. �c� All diagrams for �scel�G ,�� up
to third order. In the topologies indicated, the hybridization line can
point in any direction, which gives 2, 4, and 4
8 diagrams in first,
second, and third order, respectively. �d� Factorization of third-order
diagrams ��iii�–�vi� in �c�� by separating out the vertex part.
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of the backbone. �iv� An overall factor in must be added.
The diagrammatic expansion for � can be resummed by

replacing bare propagators with interacting propagators G
and in turn taking into account only skeleton diagrams, i.e.,
diagrams in which internal propagator lines have no self-
energy insertions. Truncation of the skeleton series
�scel�G ,�� at finite order leads to conserving
approximations50 because in this case the approximate self-
energy functional can be derived from an approximation to
the Luttinger-Ward functional.51 In particular, this fact en-
sures the conservation of the pseudoparticle number in Eq.
�7�, which is crucial in order to obtain a meaningful approxi-
mation scheme for nonequilibrium situations. To leading or-
der in , the conservation of �Q�� implies

Q̃ 	 lim
�→�

�Q��


= i�

m

�− 1�mGmm�t,t+� , �29�

=− �
m

Gmm
M ��� , �30�

where t+ is infinitesimally later on C than t, and
�−1�m= �1 if m corresponds to Bose or Fermi particles, re-
spectively. These relations provide a good check for the nu-
merical implementation.

All skeleton diagrams up to third order are displayed in
Fig. 2�c�. The self-consistent strong-coupling expansion has
been proposed long ago30–32as an approximate solution for
the Anderson impurity model. Kuramoto32 coined the term
noncrossing approximation for the lowest order, i.e., keeping
only the first diagram in Fig. 2�c�. In the present work we use
the skeleton series up to third order as an impurity solver
within nonequilibrium DMFT and compare the results to
CTQMC �Sec. IV�.

D. Diagram rules for the impurity Green’s function

In general, expressions for observables in the impurity
model can be derived from the grand potential

��=−�−1 log Tr�QTCeS̃imp�. Because diagrams for the cor-
rection ���=��−����=0� contain at least one closed loop
of pseudoparticle lines, ��� is proportional to  for �→�.
The leading order in 

� = lim
�→�

− 1

�
log Tr�QTCeS̃imp� �31�

is obtained by adding to the local contribution ���=0� all
diagrams of �� which contain only one loop, in which G� is
replaced by G, and where integrals over the internal vertices
are restricted such that the vertices are in cyclic order. �See
the analogous argument for � in Sec. III C.�

Using Eq. �14�, the impurity Green’s function in
Eq. �3� is given by G�t , t��=lim�→� G��t , t�� / �Q��, where

Gpp�
� �t , t��=−i�TCd̃p�t�d̃p�

† �t����. It can thus be obtained from
the derivative �cf. Eqs. �9�, �10�, �29�, and �31��

Gpp��t,t�� =
�

Q̃

	�

	�p�p�t�,t�
. �32�

Diagrams for G�t , t�� �in terms of the projected pseudopar-
ticle Green’s functions� are therefore constructed by remov-
ing one hybridization line from the diagrams for � �Fig. 3�.
Note that a diagram for � generally has a symmetry factor
1 /S�1, where S is the number of topologically equivalent
ways to label the vertices. The symmetry factor disappears in
the expansion of G because for a diagram with symmetry
factor 1 /S there are S ways to remove a hybridization line
which lead to the same diagram for G. The series for G can
thus be resummed in the same way as the series for �, i.e.,
by keeping only skeleton diagrams for G, and replacing G0
with G. Equation �32� then holds also for the skeleton expan-
sion

Gpp�
scel�G,���t,t�� =

�

Q̃

	�scel�G,��
	�p�p�t�,t�

, �33�

where �scel�G ,�� is the Luttinger Ward functional, i.e., the
skeleton expansion for � in terms of the fully interacting
�projected� propagators G. To design an approximation for
Gscel�G ,�� which is consistent with a given approximation of
� one must truncate both �scel�G ,�� and �scel�G ,�� at the
same order.

The final rules for Gscel�G ,�� read: the nth-order
contribution consists of a loop of projected pseudoparticle
propagator lines �Fig. 2�b�� which connects 2n vertices �n
annihilation operators, n creation operators�. One d-vertex
�time t, � line labeled p� and one d† vertex �time t�, �-line
labeled p�� are external vertices. The internal vertices are
connected by hybridization lines such that no internal line
has a self-energy insertion. Sum over all internal flavor indi-
ces and integrate over internal �contour� time variables re-
specting the cyclic order of t1 , . . . , t2n along the contour. Add
a prefactor in. To determine the sign of a diagram D, reinsert
the � line between the external vertices. This recovers the
diagram D� in the expansion of � from which the diagram D
is derived. The sign �D of D is given by the sign of D�, i.e.,
�D= �−1�s+f, where s is the number of crossings of hybrid-
ization lines, and f is the number of hybridization lines that
go in opposite direction to the string of pseudoparticle lines
that is obtained if the loop is cut at an arbitrary fermionic
propagator line. All skeleton diagrams for G up to third order
are shown in Fig. 3.

i) ii) iii)

vi)v)iv)

FIG. 3. All diagrams for Gscel�G ,�� in first order �diagram �i��,
second-order �diagram �ii��, and third-order �diagram �iii�–�vi��. In-
ternal hybridization lines can point in any direction, which gives 1,
2, and 4
4 diagrams in first, second, and third order, respectively.
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E. Numerical implementation

Before presenting benchmark results for the self-
consistent hybridization expansion, we would like to
make some remarks on the numerical implementation.
First of all, we note that the number of possible labelings
for the internal flavor indices is usually quite restricted.
As an example, consider the single-impurity Anderson
model with the four basis states 
0�, 
��=d�

† 
0�,
and 
↑↓�=d↓

†d↑
†
0�, Hloc=Ud↑

†d↑d↓
†d↓−��d↑

†d↑+d↓
†d↓�, and

Shyb=−i�Cdtdt���d�
†�t����t , t��d��t��. The matrix elements in

Eq. �9c� are nonzero only for the combinations F�,0
� =1 and

F↑↓,�
�̄ =�. Furthermore, Green’s functions are diagonal in

pseudoparticle flavor, because both the interaction part and
the hybridization function are diagonal in the occupation
number basis. The second-order diagram for �mm�t , t��, e.g.,
then only allows eight possible labelings for the three inter-
nal Green’s function lines, which are �↑ ,0 ,↓� and �↓ ,0 ,↑�
for m= ↑↓, �0, �̄ , ↑↓� and �↑↓ , �̄ ,0� for m=�, and �↑ , ↑ ↓ ,↓�
and �↓ , ↑ ↓ ,↑� for m=0.

To obtain a self-consistent solution, the hybridization ex-
pansion is evaluated by iteratively solving the Dyson equa-
tion for G�t , t�� �Eq. �26��, and evaluating the integral expres-
sions for ��t , t��. However, the real-time version of the
expansion can easily be implemented in a slightly simpler
way that exploits the causal structure of the equations. If we
have computed G�t , t�� for Re�t�, Re�t��� tmax, then G�tmax
+�t , t�� and G�t , tmax+�t� can be obtained from the above-
mentioned iteration in only one or two steps by starting from
a polynomial extrapolation of G�t , t��. This amounts to a
stepwise propagation of the solution on the imaginary branch
of C to real times.

The numerical effort of the evaluation of diagrams is
mainly determined by the contour integrals over the internal
vertices. Using Monte Carlo for the evaluation of the inte-
grals for higher order diagrams will lead to a sign problem.
We use a quadrature formula for the integrals which is based
on equidistant discretization of the contour C. The nth-order
diagrams have 2n−2 internal integrals �cf. Figs. 2�c� and 3�,
which have to be evaluated for each combination of the two
external time variables. �Nonequilibrium correlation func-
tions depend on both time arguments separately�. This seems
to imply that the numerical effort for the evaluation of � and
G scales with the number N of mesh points like N2, N4, and
N6 for first, second and third order, respectively. �The effort
for the solution of the Dyson equation, which is essentially a
matrix inversion on C, scales as N3.� However, one can re-
duce the effort for the evaluation of the third-order diagrams

to N5 by factorizing out a vertex part F̃ with two internal
integrals and three external variables �Fig. 2�d��; � and G

can then be computed from F̃ with only two additional inte-

grals. Since F̃ does not have to be stored in memory, this
way of evaluation is more efficient than performing four in-
ternal integrals.

IV. COMPARISON TO CTQMC

A. Interaction quench in the Hubbard model

Nonequilibrium DMFT for the interaction quench in the
Hubbard model provides a perfect framework to benchmark

the perturbative impurity solver. The Hubbard Hamiltonian

H�t� = �
ij�

Vijci�
† cj� + U�t��

i
�ni↑ −

1

2
��ni↓ −

1

2
� �34�

describes fermions of spin one half which hop on a lattice
with hopping amplitude Vij and interact with a repulsion en-
ergy U on each site. To perform an interaction quench, the
system is prepared in a thermal equilibrium state at tempera-
ture T=1 /� and interaction U�t�0�=U0 for times t�0, and
the interaction is suddenly switched to a new value
U�t�0�=U at t=0.

The DMFT equations for the interaction quench have
been explained in detail in Refs. 18 and 19. In the following
we assume that the hopping matrix Vij has a semielliptic
local density of states

���� = �4 − ��/V�2/2�V �35�

�with half-bandwith 2V� and we focus on the paramagnetic
state at half-filling. DMFT then reduces to a set of two self-
consistent equations:18,19 �i� the local lattice Green’s function
in Eq. �3� must be determined from the single-site action in
Eq. �1�, where the index p now labels spin �= ↑ ,↓, and the
local Hamiltonian is given by

Hloc�t� = U�t��
i
�ni↑ −

1

2
��ni↓ −

1

2
� . �36�

�ii� The hybridization function is determined by the
self-consistency52

���t,t�� = V2G��t,t�� . �37�

The hopping V=1 is used as an energy unit and times are
measured in units of the inverse hopping ��=1�.

Below we solve these DMFT equations by means of the
self-consistent hybridization expansion and compare to re-
sults from CTQMC.18,19 In particular, we focus on the time
evolution and the thermal equilibrium value of the double
occupancy per site, d�t�= �ni↑ni↓�, which is a local observable
and can thus be measured directly in the impurity model, i.e.,

d�t� = iQ̃−1G↑↓�t,t+� , �38�

where G↑↓ is the propagator for doubly occupied sites and t+

is infinitesimally later on C than t.

B. Initial equilibrium state

Figure 4 shows the double occupancy deq�� ,U� in the
thermal equilibrium state at interaction U and inverse tem-
perature �. At large enough temperature, deq�T ,U� decreases
smoothly as a function of U �Fig. 4�a��. As T is lowered, the
curves bend strongly around U=4.5 �Fig. 4�b��, indicating a
narrow crossover between metallic and insulating behavior.
Below a critical temperature Tc, the transition between metal
and insulator becomes a first-order phase transition
�Fig. 4�c��. For the semielliptic density of states, the end
point of this Mott transition is located at Uc=4.7 and
Tc=0.055.53

In agreement with recent results based on a Monte Carlo
sampling around NCA,40 we find that NCA can reproduce
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the CTQMC results only deep in the insulating phase. How-
ever, already the lowest order correction to NCA, i.e., OCA,
very well accounts for the nonlinear behavior of deq�U ,T� in
the crossover regime, and the third order in the self-
consistent hybridization expansion almost quantitatively re-
covers the CTQMC results even close to the critical point
�Fig. 4�c��. The location of the critical end point in the phase
diagram is in good agreement with previous QMC results:53

if we estimate Tc from the smallest � for which we can
detect hysteretic behavior in deq�� ,U� �this gives actually a
lower bound for Tc�, we find Tc�1 /19�0.052 for the third
order and Tc�1 /26�0.038 for OCA �Fig. 4�c��. NCA, on
the other hand, does not display singular behavior in this
parameter regime. As usual, the convergence of the DMFT
equations slows down close to the critical point, and it is thus
hard to get precise numbers for Tc and Uc.

The order-by-order convergence of the self-consistent hy-
bridization expansion is also evident from the local Green’s
function G���, both in the crossover regime �Fig. 5�a�� and in
the insulating phase �Fig. 5�b��. From the value G�� /2� one
can see that NCA overestimates the insulating nature of the
solution. This fact reflects a well known deficiency of NCA:
the Kondo temperature TK for the Anderson model comes out
correct within NCA for U=� but it is severely underesti-
mated for finite interaction U. This problem can be cured by
taking into account certain vertex corrections, which corre-
spond to summing up higher order terms in the self-
consistent expansion.38,39 Our results show that the third or-

der is sufficiently accurate in a wide parameter range
covering the insulating phase and the crossover regime, even
close to the critical point.

Another known deficiency of the NCA is that the Fermi
liquid in the Anderson impurity model for T�TK is not cor-
rectly described.37 Because this problem cannot be cured by
taking into account finite order diagrams in the hybridization
expansion,39 one would expect that even the third order will
yield wrong results in the metallic phase at low-enough tem-
perature. Empirically, we find a slow down of the conver-
gence as the temperature is lowered in the metallic phase and
we have not systematically studied the breakdown of the
truncated self-consistent hybridization expansion deep in the
metallic phase.

C. Time evolution of the double occupancy

To test the accuracy of the strong-coupling expansion for
nonequilibrium problems we compute the time evolution of
the double occupancy after an interaction quench. Due to the
dynamical sign problem, weak-coupling CTQMC calcula-
tions for interacting initial states19 can be performed only to
relatively short times tmax, which mainly depend on the final
interaction U�t�0�. However, for those tmax which are ac-
cessible with CTQMC, the comparison with the strong-
coupling expansion reveals a similar trend as for thermal
equilibrium states �Fig. 6�: for quenches from the crossover
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FIG. 4. �Color online� Double occupancy deq�� ,U� in the ther-
mal equilibrium state. The impurity solver is either CTQMC, or the
self-consistent hybridization expansion up to first �NCA�, second
�OCA�, and third order. �a� �=5. �b� �=10. �c� � close to the
critical temperature Tc of the first-order metal-insulator transition.
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FIG. 5. �Color online� Matsubara component defined in Eq. �5�
of the local Green’s function G���� �Eq. �3��, which is independent
of � in the paramagnetic phase. The impurity solver is either
CTQMC, or the self-consistent hybridization expansion up to first
�NCA�, second �OCA�, and third order. �a� U=4.5, �=20 �cross-
over regime�. �b� U=6, �=20 �insulating phase�. Note that the
CTQMC results in the insulating phase are only accurate for values
larger than the “noise floor” of about 10−3. Panels �c� and �d� show
the same data as �a� and �b�, respectively, but plotted for small � on
a linear scale.
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region to larger interaction both the initial state and the time
evolution is not correctly described within NCA, whereas
OCA is more reliable, and the third-order calculation recov-
ers the CTQMC results almost quantitatively �Figs. 6�a� and
6�b��. While Figs. 6�a� and 6�b� show the longest times ac-
cessible with CTQMC, the OCA and the third-order calcula-
tions can be carried to substantially longer times. For a
quench from the insulating phase to smaller interaction,
NCA is better suited to describe the initial state but differ-
ences to CTQMC become more pronounced during the time
evolution �Figs. 6�c� and 6�d��.

V. MODULATION SPECTROSCOPY ON THE MOTT
INSULATING PHASE

A. Introduction

To illustrate the capability of the approach, we are now
going to present an application of the strong-coupling hy-
bridization expansion in a parameter regime where the weak-
coupling CTQMC approach would be numerically too ex-
pensive. Our aim is to compute the response of the double
occupancy in the Mott insulator to a time-dependent change
in the interaction U or the hopping amplitude V. Such an
experiment, with a periodic change in the hopping, was
originally proposed by Kollath et al.20 as a new type of spec-
troscopy for ultracold gases in optical lattices without direct
analogon in solid state physics. In the meantime, the tech-
nique has been used as an experimental probe for the detec-
tion of the Mott insulating phase of ultracold 40K atoms in an
optical lattice.21

In the experiments, the hopping amplitude V�t�
=V0�1+� cos��t�� is modulated sinusodially over several

tens of periods 2� /�.21,22 Apart from an oscillating compo-
nent dosc�t� with zero time-average, the double occupancy
d�t� rises linearly in time for small times and saturates within
a time scale �sat. In the Mott insulating phase, the modulation
spectrum, i.e., the magnitude of the response as a function of
the frequency, has a peak when � is approximately at reso-
nance with the energy U that is needed for the creation of a
doublon-holon pair, and a gap at �=0.20,54

Because the modulation strength can be quite large, many
aspects of those experiments can only be understood by
means of a nonequilibrium formalism. This is certainly the
case for the saturation time �sat �Ref. 55� and for the non-
equilibrium quasisteady �time-periodic� state which the sys-
tem is in once it has saturated. Even when averaged over
time, such a state might have properties which do not re-
semble any thermal equilibrium state of the system. Non-
equilibrium DMFT can be used to resolve some of these
issues. In the following, we demonstrate that DMFT yields a
modulation spectrum which is in agreement with a recent
investigation based on slave-boson mean-field theory54 and
similar to what has been obtained in time-dependent density-
matrix renormalization group calculations for the one-
dimensional Hubbard model.20 Furthermore, we will show
that a slightly different modulation procedure, namely, a
quench of the hopping or the interaction by a few percent,
provides another probe which is sensitive to the Mott transi-
tion and the metal-insulator crossover at higher temperatures.

B. Periodic modulation of U

In the following we consider the Hubbard model in
Eq. �34� with a time-dependent interaction

U�t � 0� = U0�1 + � cos��t�� , �39�

where � is the relative modulation strength ���1�. For
times t�0, the system is prepared in an equilibrium state at
interaction U�t�0�=U0 and temperature T=1 /�. The model
is treated within nonequilibrium DMFT, assuming a semiel-
liptic density of states in Eq. �35�, such that the self-
consistency is given by Eq. �37�. The energy scale is fixed by
the quarter bandwidth V=1. Because we will restrict the in-
vestigation to insulating states and to the crossover regime,
we will mainly use OCA as an impurity solver.

Experimentally, the hopping is more easily tunable than
the interaction because the former is strongly affected by a
change of the optical lattice depth. Our description in Eq.
�39� is nevertheless justified because modulation of U and V
are equivalent from a theoretical point of view, and only the
ratio U /V matters. The Hubbard model H�t� with
time-dependent interaction in Eq. �39� and time-independent
hopping V0 can be mapped onto an equivalent model with
time-independent interaction U0 and periodic hopping
V�t��=V0 / �1+� cos��t�t����, where t�t�� is the inverse
of the transformation t��t�= t+� sin��t� /�. To lowest
order in �, modulation of U�t�=U0�1+� cos��t�� and
V�t��=V0�1−� cos��t��� are thus equivalent, although
higher harmonic terms ��n cos�n�t�� appear in V�t�� for
large �. The equivalence can be established by a simple
change of time variables in the time-evolution operator
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FIG. 6. �Color online� Double occupancy d�t� after an interac-
tion quench from U0 to U. ��a� and �b�� Initial states in the cross-
over regime �U0=3, �=5�, ��c� and �d�� Initial states in the insulat-
ing phase �U0=5, �=5�.
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U�t ,0�=Tt exp�−i�0
t dt̄H�t̄�� from t to t�, which yields

U��t� ,0�=U�t�t�� ,0�, where U��t� ,0� is the time-evolution
operator for the model H��t�� with periodically modulated
hopping V�t��.

The typical time-evolution of the double occupancy d�t�
during a periodic modulation of U is displayed in Fig. 7�a�.
The effect of the modulation vanishes for �→0 and is larg-
est close to ��U. The anharmonic behavior in d�t� for small
frequencies � is due to a rather large amplitude 	U	�U0.
After removing the oscillating component dosc�t� by taking
an average dav�t�=�t−�/2

t+�/2dt�d�t�� over one period �=2� /�,
one can clearly identify an initial linear increase with a slope
����, followed by a trend toward saturation at longer times.

The rate ���� can be obtained from second order time-
dependent perturbation theory, i.e., ���2 for ��1.20,54

�Linear response yields only an oscillating contribution.�
Since the resulting Fermi’s golden rule expression for � de-
pends only on the equilibrium state of the system at
U=U0,54 it would be best to measure ���� directly in the
limit �→0. To extract the slope ����, one has to go to small

amplitudes � anyway because only then does the linear re-
gion extend over many oscillation periods. On the other
hand, experiments are performed at quite large � in order to
obtain a good signal to noise ratio and the magnitude of the
response is defined by the value of the double occupancy
dav�t� at given time t0. Usually, t0 is chosen so large that
dav�t� is no longer linearly increasing at t= t0.

In Fig. 7�b� we compare two ways to quantify the re-
sponse: either, �i� the increase of the double occupancy
dav�t0�−d�0� is measured at a given time t0 for large modu-
lation amplitudes as a function of frequency, or �ii� the slope
���� is obtained from a linear fit to the initial increase for
smaller amplitudes �. Both approaches give a modulation
spectrum with a peak at ��U and a gap at �=0. Similar to
the findings of the previous section, the NCA solution
slightly overestimates the insulating nature of the solution
compared to the more reliable OCA. Like in the one-
dimensional case,20 our data show that the location of the
peak at ��U is not considerably shifted if the measurement
is no longer performed at ��1. The gap, on the other hand,
is most reliably extracted from the second approach �ii�. In
the following we will only focus on the peak and not inves-
tigate the low-frequency weight in detail.

Figure 8�a� displays the peak in the modulation spectrum
for various values of U0. For the semielliptic density of
states, the first-order phase transition line terminates at
Uc�4.7 and Tc�0.055,53 and the zero-temperature transi-
tion is located at Uc2�6. Hence the data in Fig. 8, which are
computed at T=0.1, correspond to a cut through the cross-
over region of the metal-insulator phase diagram. The peak
in the modulation spectrum is clearly visible all throughout
the insulating phase and the crossover regime between metal
and insulator. Its position �max�U0� scales linearly with U0 in
the insulating phase �Fig. 8�b�� while in the crossover regime
we find only a weak dependence on U0. This finding is in
good agreement with results for ���� from slave-boson
mean-field theory,54 where peaks around ��U and ��Uc2
are predicted for the insulating phase and the metallic phase,
respectively. In the slave-boson approach, these spectral fea-
tures arise from excitations between the Hubbard bands in
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FIG. 7. �Color online� �a� Double occupancy d�t� during
a periodic modulation of the interaction around U0=7
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�t−� /� , t+� /��. OCA was used as an impurity solver. �b� Modu-
lation spectrum for U0=7 and �=10, using either NCA or OCA as
an impurity solver: For large amplitude 	U=2, the data have been
obtained from dav�t0� at given time t0=10 �open symbols�; for small
amplitudes 	U=0.5, the slope �d /dt�dav�t� in the interval
8� t�10 is plotted �full symbols�. The curves have been scaled
with a constant factor to match their peak heights. �c� Averaged
double occupancy dav�t� at U0=7 for various modulation
amplitudes 	U=�U0, plotted against t	U2. The three curves labeled
NCA almost fall on top of each other.
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the insulator and between pre-formed Hubbard bands in the
metallic phase.

Since our calculation is performed at temperatures above
Tc and the preformed Hubbard bands shift with U, the almost
kinklike �max�U0� seems very remarkable. It should be in-
vestigated whether the third order in the expansion leads to a
smoothening of this feature. This will require quite some
numerical effort �although it is still feasible using small-scale
parallelization� and it is thus left to future work, which
should involve a more realistic setup.

Another interesting topic is the saturation of dav�t� at large
times.55 A scaling of the time axis with �2 indicates that the
saturation time �sat behaves like �sat��−2 in the insulating
phase for frequencies �=U �Fig. 7�c�� while the saturation
value dav�t→�� does not depend sensitively on 	U. How-
ever, due to the long times needed to reach saturation at
small 	U, this result has so far only been computed using
NCA as an impurity solver, which is reliable only deep in the
insulating phase. A dependence �sat��−2 would be consistent
with an incoherent pumping mechanism into a doublon-
holon continuum.55

C. Quenchlike modulation of U

Modulation spectroscopy for the double occupancy is, in
principle, not restricted to the periodic modulation Eq. �39�.
In particular, a small interaction quench from U�t�0�=U0 to
U�t�0�=U0+	U, or an equivalent quench of the hopping,
can be viewed as a modulation experiment as well. In order
to extract a frequency-dependent response signal, we define
the Fourier transform

d̃��� = Re�
0

tmax

dtei�t�d�t� − d�tmax�� , �40�

where tmax is the maximum time reached in the simulation
and d�t�= �1 /Z�Tr�e−�H0eiHtde−iHt� is the time-dependent
double occupancy. Using first-order perturbation theory one
obtains

d̃��� = �−1 Im �̃��� + O��	U��2� , �41�

where �̃���=�0
�dsei��+i0�s��s� is the Fourier transform of lin-

ear response function

��s� = − i
1

Z
Tr�e−�H�eiHsde−iHs,d�� �42�

of the final Hamiltonian H�t�0�. Equation �41� holds for

��0 and tmax→�, while evaluation of d̃��� at tmax�0 cor-
responds to a broadening of ���� on the scale 1 / tmax. The
time-independent expansion parameter �	U in Eq. �41� is
obtained by performing a perturbation expansion of the ini-
tial state density matrix exp�−�H�t�0�t� instead of the time-
evolution operator exp�−iH�t�0�t�.

In principle, ���� could be computed directly from equi-
librium DMFT. However, the equilibrium imaginary time
formalism requires an analytical continuation while the non-
equilibrium calculation gives direct access to frequency or
time-dependent quantities. Furthermore, in an experiment the
values of U would have to be changed by at least a few
percent, such that it is unclear whether Eq. �41� is still ap-
propriate to describe the response.

After an interaction quench from the noninteracting
ground state to the insulating phase in the Hubbard model,
the double occupancy d�t� relaxes through a series of oscil-
lations at approximate frequency U,18 which correspond to
the well-known collapse and revival oscillations in the limit
U�V.6 Similar oscillations become visible after small
quenches within the insulating phase �U+=6.5,5.5,5 in Fig.
9�; their Fourier transform leads to a broad peak around
��U �Fig. 9�b��. The series of quenches displayed in Fig. 9
corresponds to a scan through the phase diagram at constant
temperature T=0.1 above the critical temperature of the Mott
transition. A crossover between metallic and insulating be-
havior is thus expected between U�4 and U�5. In agree-
ment with this, the gap in d��� at �=0 disappears between
U=5 and U=4.75. Although the absolute changes of the
double occupancy are small, these results suggest that the
double occupancy after an interaction quench may be used as
probe of the metal-to-insulator crossover in the Hubbard
model.

VI. CONCLUSION

In this paper we have presented a self-consistent diagram-
matic strong-coupling expansion on the Keldysh contour,
which can be used to solve the Anderson impurity model in
rather general nonequilibrium situations. The main purpose
of this study was the development of an impurity solver for
nonequilibrium DMFT which can cover the regime of large
interactions and relatively long times. By comparing results
from our strong-coupling expansion to numerically exact
weak-coupling CTQMC for the Hubbard model, we found
that the strong-coupling expansion is a good candidate to
fulfill these requirements: while it fails in the metallic phase
and at very low temperatures, and while the first order or
noncrossing approximation is correct only deep in the insu-
lating phase, an important correction arises already in the
second order �OCA�. In the insulating phase and in the cross-
over regime the latter gives quite reliable results, which can
be brought into almost quantitative agreement with CTQMC
by going to the third order of the expansion.

Although the numerical effort for the evaluation of the
diagrams rises considerably with the expansion order, even
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FIG. 9. �Color online� �a� The double occupancy after quenches
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U0=7,6 ,5.6,5 ,4.5. OCA has been used as an impurity solver. �b�
Fourier transform in Eq. �40� of the data in �a�.

NONEQUILIBRIUM DYNAMICAL MEAN-FIELD… PHYSICAL REVIEW B 82, 115115 �2010�

115115-11



calculations up to third order can be carried to substantially
longer times than CTQMC, because the latter suffers from an
exponential increase in the computational cost due to the
dynamical sign problem. We thus believe that the strong-
coupling expansion will allow to extend nonequilibrium
DMFT investigations into the parameter regime of rather
strong interactions and not too low temperatures which was
so far not accessible within weak-coupling CTQMC. It is
precisely this parameter regime which is relevant for many
experiments with cold atomic gases21,22 and pump-probe
spectroscopy. The broad range of possible applications of
DMFT in this field includes the excitation of the Mott insu-
lating phase by a short laser pulse �similar to the experiments
in Refs. 3 and 4�, the response of the Mott insulator to very
strong electrical fields that might lead to a dielectric
breakdown,56 or an extended investigation of the interaction
quench in the Hubbard model.18

In the last part of the paper we have used the self-
consistent hybridization expansion as an impurity solver
within nonequilibrium DMFT in order to study the genera-
tion of doubly occupied sites in a Mott insulator by a time-
dependent variation in the interaction or hopping strength. In
agreement with previous investigations,20,54 the modulation
spectrum was found to have a gap at �=0 and a pronounced
maximum at ��U. The maximum persists in the crossover

regime but its location is then no longer proportional to U.
Furthermore, we have studied the double occupancy d�t� as a
function of time after small interaction quenches. In the
crossover regime, the behavior of d�t� is drastically chang-
ing, which is most clearly evidenced by the disappearance of
the gap in the Fourier transform of d�t�. Although the abso-
lute changes of the double occupancy are small, its time-
evolution may thus yield a sensitive probe of the metal-to-
insulator crossover in the Hubbard model.

An interesting next step would now be to repeat similar
calculations in a more realistic setup, e.g., on a cubic lattice.
A careful comparison of results from the self-consistent hy-
bridization expansion up to second and third order and from
CTQMC �for small times� will allow to make definite experi-
mental predictions, such as for the modulation spectrum in
the insulating phase and the crossover regime, and for the
saturation behavior of the double occupancy.
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